
Process Compliance Analysis based on

Behavioural Profiles

Matthias Weidlicha,∗, Artem Polyvyanyya, Nirmit Desaib, Jan Mendlingc, Mathias
Weskea

a Hasso Plattner Institute, University of Potsdam,

Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
b IBM India Research Labs, Domlur Ring Road, Bangalore 560071, India
c Humboldt University, Unter den Linden 6, D-10099 Berlin, Germany

Abstract

Process compliance measurement is getting increasing attention in companies due to
stricter legal requirements and market pressure for operational excellence. In order to
judge on compliance of the business processing, the degree of behavioural deviation of a
case, i.e., an observed execution sequence, is quantified with respect to a process model
(referred to as fitness, or recall). Recently, different compliance measures have been
proposed. Still, nearly all of them are grounded on state-based techniques and the trace
equivalence criterion, in particular. As a consequence, these approaches have to deal with
the state explosion problem. In this paper, we argue that a behavioural abstraction may
be leveraged to measure the compliance of a process log – a collection of cases. To this
end, we utilise causal behavioural profiles that capture the behavioural characteristics
of process models and cases, and can be computed efficiently. We propose different
compliance measures based on these profiles, discuss the impact of noise in process logs
on our measures, and show how diagnostic information on non-compliance is derived.
As a validation, we report on findings of applying our approach in a case study with an
international service provider.

Keywords: Process Compliance, Compliance Measurement, Log Conformance, Root
Cause Analysis

1. Introduction

Compliance management is becoming increasingly important. Companies seek for a
better control of their processes not only to satisfy new legal requirements but also to
leverage cost-saving opportunities through standardisation of business operations. Once

∗Corresponding author
Email addresses: matthias.weidlich@hpi.uni-potsdam.de (Matthias Weidlich),

Artem.Polyvyanyy@hpi.uni-potsdam.de (Artem Polyvyanyy), Nirmit123@in.ibm.com (Nirmit Desai),
jan.mendling@wiwi.hu-berlin.de (Jan Mendling), Mathias.Weske@hpi.uni-potsdam.de (Mathias
Weske)

Preprint submitted to Elsevier February 16, 2011

non-compliant cases of operations are detected, the company can either update its process
model to cover the respective case or it can impose new mechanisms to enforce best
practice execution. In this way, compliance management is a central piece in the puzzle
of advancing a company towards a higher degree of process maturity.

In order to make compliance management work in practice, it is required to gather
detailed information on the execution of business processes. In recent years, process
mining has emerged as a technique that automatically reworks process log data such
that managerial decision making can be supported [1, 2, 3, 4, 5]. In this paper, we focus
on scenarios in which the processing is already described by normative process models.
Such a model defines which steps have to be performed, and in which order, to achieve
a business value. Once a process log is available, certain key measures of compliance
management can be quantified along a set of orthogonal dimensions [6, 7]. Fitness, also
referred to as recall, for instance, measures to which degree the behaviour of a single case
(or a complete process log) is captured in a process model. Other dimensions focus on
the appropriateness of a process model with respect to a process log. In this case, the
degree to which the process model is restricted to the observed behaviour (precision) or
allows for additional behaviour (generality) is quantified, see [8] for a detailed discussion.

To evaluate the compliance of business operations, fitness measures are of utmost
importance. These measures provide feedback on cases that do not conform to the
normative process model and quantify any behavioural deviation. The latter is then used
to compute the degree of compliance for the cases. Precision and generality, in turn, aim
at quantifying the quality of a process model with respect to the observed behaviour
instead of the quality of the cases of a process log. Hence, these metrics are mainly used to
judge on the quality of process models that are discovered by mining algorithms (cf., [9]).

Various compliance measures, in the sense of a fitness measure, have been proposed in
the literature [9, 10, 11, 12, 13]. Still, all of these measures rely on state-based techniques
that involve replaying the cases of a process log, i.e., the single observed execution
sequences. First and foremost, compliance may be computed as the share of cases of
a process log that can be replayed in the process model [11, 12]. More fine-granular
measures try to replay a case step-wise in the process model and quantify the number of
execution steps that are in line with the process model semantics [9, 10, 13]. All these
measures are based on the notion of trace equivalence, which is a weak notion in the linear
time – branching time spectrum [14]. As a consequence, these approaches have to cope
with the state explosion problem in order to achieve efficient computation [15]. That, in
turn, leads to the application of heuristics that have to be tuned for a certain setting. In
addition, phenomena such as compliance values below one for valid execution sequences of
the process model that stem from invisible activities have to be addressed separately [16].
Moreover, the classical fitness measures [9, 10] has been criticised to yield compliance
values which are significantly lower than what is considered to be correct by domain
experts [17]. These results, along with the inherent complexity of state-space based
approaches, suggest to consider an alternative grounding for compliance measurement.

In this paper, we approach the problem from the perspective of relations between pairs
of activities or log events, respectively, instead of trying to replay cases according to a
rather strict notion of equivalence. That is, we leverage causal behavioural profiles [18, 19]
as a base line to compliance measurement. These profiles are a behavioural abstraction
that is more relaxed than trace equivalence. As these profiles can be computed efficiently
for many classes of process models, we avoid performance issues of existing state-based

2

measures. This paper is an extended and revised version of our earlier work [20], which
proposed a first set of compliance measures based on causal behavioural profiles. While
we follow the same idea in this paper, we introduce novel compliance measures on a
more general level. In addition, we address two aspects that are of high importance once
compliance measures are applied in practice. On the one hand, diagnostic information
should be given in case of non-compliance. On the other hand, the impact of noise
in a process log on the compliance measures has to be made explicit in order to allow
for appropriate interpretation of the computed compliance values. In summary, the
contributions of this paper are the following:

• We present novel compliance measures for the cases of a process log. In contrast
to our previous work [20], these measures are directly grounded on the utilised
behavioural abstraction.

• We give an overview of common noise patterns in a process log and their impact on
our compliance measures. This overview helps to pin down the computed compliance
values with respect to the noise that can be expected in a certain setting.

• Our approach provides detailed feedback on non-compliance and supports root
cause analysis. Diagnostic information is presented for single cases and on the level
of a process log.

Finally, we report on findings from an application of our approach in an industry case
study. Using a process log from an international service provider, we discuss the results
of our compliance analysis.

Against this background, the paper is structured as follows: Section 2 discusses
the challenge of measuring compliance by means of an example. Section 3 presents
preliminaries for our investigations. Section 4 introduces our compliance measures based
on behavioural profiles. Subsequently, Section 5 gives an overview of common noise
patterns and their impact on our measures. Section 6 introduces an approach of deriving
diagnostic information on non-compliance. Section 7 presents findings from our validation,
for which we implemented a prototype and tested it on a real-world log. Section 8
discusses our approach in the light of related work. Finally, Section 9 concludes the paper
and identifies topics for future research.

2. Background

This section illustrates the problem of measuring compliance for business processes
that are described by normative process models. While there are various process modelling
languages with varying expressiveness and notations, a process model can commonly
be seen as a graph consisting of nodes and edges. The former depict business activities
and split / merge nodes that implement an execution logic beyond simple sequencing of
activities. The latter define the control flow structure of the business process. Figure 1
shows an exemplary process model captured in BPMN. It includes 11 activities, all named
with a capital letter. The diamonds define the routing behaviour of the BPMN model.
Once I and A have been executed, there is a choice being made at the diamond marked
with an X. First, the upper branch including B may be taken. After an execution of B,
another choice is made. This may result in an execution of H or J , so that B is executed

3

I A

C D

E F

H

B

O

G

J

Figure 1: Example of a BPMN process model

again. As an alternative, activity O may be executed directly after the first execution of
B. Second, the lower branch leading to the diamond with the plus sign may be taken.
In this case, the sequences C, D and E, F are executed in parallel, which are followed
by an execution of G. Finally, the alternative branches are merged and control is passed
towards the completion of the process after execution of O.

In the context of this paper, we assume that information on the actual processing
is available in the form of a process log (or log). A log comprises cases that represent
observed execution sequences of activities from a process model. Extracting events from
an IT-system and relating them to activities of a process model may be a cumbersome task.
Depending on the logging facility, events may have to be filtered and aggregated, or even
have to be generated based on state changes on the database level, see also [21]. In a perfect
setting, the cases of a log completely comply with the behaviour defined by the process
model. Then, the cases are valid execution sequences. In practice, however, observed
execution sequences often deviate from predefined behaviour. This may be a problem
of the model when it does not meet validity and completeness requirements [22]. When
the process model has a normative character, deviations may be caused by information
systems that record a log but do not explicitly enforce the execution order of activities.
It is also possible that people deliberately work around the system [2]. This may result in
cases for the process model in Figure 1, such as the following.

• Case c1 = 〈I, A,E,C,D, F,G,O〉
• Case c2 = 〈I, A,C,B,G, F,O〉
• Case c3 = 〈I, A,B, J,H,B,O,G〉
• Case c4 = 〈I, C,E〉
• Case c5 = 〈F,C,D,G〉

From these five cases, only the first one is also a valid execution sequence, i.e., it can be
completely replayed by the process model. Still, the other cases capture a certain share of
the behaviour defined in the model. Such cases make it necessary to measure compliance
a posteriori.

As stated above, there are different measures that aim at quantification of the degree
to which a single case or a complete process log match a normative process model. While
the share of cases that represent valid execution sequences of the process model can be
seen as a straight-forward compliance measure, cf., [11, 12], more fine-granular approaches
are grounded on state-based concepts from Petri net theory. The basic idea behind the
classical fitness measure [10] is to replay the cases through the model. Activities that are

4

enabled in the model when they appear in the case are counted and related to the overall
number of activities. If an activity is not enabled, the Petri net transition representing
the activity is forced to fire, which produces a token on each of its output places. In
this way, one can quantify compliance of a case against the process model as a ratio of
enabled activities to the total number of activities. For example, in Figure 1, case c1 can
be completely replayed and has therefore a compliance value of one. Instead, case c2
can be replayed solely until B appears in the case. This activity is then fired without
being enabled. The same holds for G and F . Therefore, four firings are compliant out of
the seven firings altogether, yielding a fitness value of 0.57. In case c3, activities H, G,
and the second occurrence of B are forced to fire although they are not enabled. Thus,
altogether, only I, A, J , O, and the first occurrence of B are fired correctly from eight
activities. Therefore, the fitness is 0.63. For case c4, the absence of activity A in the case
implies a non-compliant firing of C and E, such that the fitness is 0.33. Finally, for case
c5, we derive a fitness value of 0.5 since the firing of two out of four activities is correct,
i.e., D and G.

In this paper, we suggest to base compliance analysis on a set of behavioural constraints
that a process model imposes for a pair of activities. Examples for such behavioural
constraints would be the exclusiveness (B and C in Figure 1) and order (C and D in
Figure 1) of activity execution. Other constraints relate to the obligation to execute a
certain activity (A in Figure 1) or to causal dependencies between activity executions (C
and G in Figure 1). With taking these constraints as a basis for compliance analysis, a
certain degree of behavioural abstraction is assumed. Consequently, we do not postulate
total validity and completeness of the process model [22], for which the compliance of
a process log is analysed. We show how the preservation of behavioural constraints is
leveraged to assess compliance of a given case. To this end, we employ the concept of
causal behavioural profiles which provide a behavioural abstraction of process models
in terms of behavioural constraints. Based on the compliance values obtained for single
cases, conclusions on the compliance of a log can be drawn.

3. Preliminaries

This section gives preliminaries for our work. First, we introduce the notion of a
process model used throughout the paper. Second, we define causal behavioural profiles
as a behavioural abstraction of a process model.

3.1. Process Models

For our investigations we use a notion of a process model that is based on a graph
containing activity nodes, split and merge nodes (alias control nodes). A process model
captures the commonalities of process description languages. Thus, the subset of BPMN
used in our initial example can be traced back to the following definition of a process
model.

Definition 1. (Process Model)
A process model is a tuple P = (A, ai, ao, C, F, T), with

• A as a non-empty set of activity nodes, and C as a set of control nodes, A and C
are disjoint,

• ai ∈ A as an initial activity, ao ∈ A as a final activity,
5

• F ⊆ ((A \ {ao}) ∪ C)× ((A \ {ai}) ∪ C) as the flow relation, such that (A ∪ C,F ∪
{(ao, ai)}) is a strongly connected graph, and

• T : C 7→ {and, or, xor} as a function that assigns types to control nodes.

Our notion of a process model postulates the existence of two dedicated activities that
represent the start of the process (ai) and the end of the process (ao), respectively. We
assume these activities to carry no business semantics except for the creation or closing
of a process instance. In case a process model has multiple activities without outgoing
or incoming control flow, normalisation is applied to derive a model of the respective
structure, cf., [23]. In the remainder of this paper, the identity relation for activities
is denoted by idA, i.e., (a, a) ∈ idA for all a ∈ A. We do not formalise the execution
semantics of a process model, but assume an interpretation of the model following on
common process description languages, such as BPMN, EPCs, or UML activity diagrams.
We do not assume a certain definition of semantics for the inclusive OR construct, which
raises serious issues in cyclic structures. We solely assume the existence of such a definition.
Under the assumption of well-defined execution semantics, the set of all valid execution
sequences, as well as the notion of a case, are defined as follows.

Definition 2. (Execution Sequence, Case)
The set of execution sequences EP for a process model P = (A, ai, ao, C, F, T) is the set
of all lists of the form σ = 〈ai, a1, . . . , an, ao〉 with n > 0, n ∈ N, aj ∈ A for all 0 < j ≤ n,
that can be created following on the execution semantics of P . A case c that has been
observed for P is a list of the form c = 〈a1, . . . , an〉 with n > 0, n ∈ N, and aj ∈ A for all
0 < j ≤ n.

Note that we speak of an execution sequence of a process model, solely if the sequence is
valid regarding the process model, i.e., it can be completely replayed by the model. In
contrast, a case is a non-empty sequence over the activities of a process model. As a
short-hand notation, we use Ac ⊆ A to refer to the subset of activities of a process model
that is contained in case c.

3.2. Causal Behavioural Profiles for Process Models

In order to capture the constraints imposed by a process model on the order of activity
execution, we rely on the concept of a behavioural profile [18]. Behavioural profile defines
relations for all pairs of activities of a process model. These relations, in turn, might
be interpreted as the essential behavioural characteristics specified by the models. All
behavioural relations of behavioural profile are based on the notion of weak order. That
is, two activities are in weak order, if and only if there exists an execution sequence in
which one activity occurs after the other.

Definition 3 (Weak Order (Process Model)).
Let P = (A, ai, ao, C, F, T) be a process model and EP its set of execution sequences.
The weak order relation ≻P ⊆ (A×A) contains all pairs (x, y), such that there exists an
execution sequence σ = 〈n1, . . . , nm〉 in EP and there exist two indices j, k ∈ {1, . . . ,m}
with j < k ≤ m for which holds nj = x and nk = y.

Based thereon, we define the relations of the behavioural profile for pairs of activities.
Each pair can be related by weak order in different ways.

6

Definition 4 (Behavioural Profile (Process Model)).
Let P = (A, ai, ao, C, F, T) be a process model. A pair (x, y) ∈ (A×A) is in at most one
of the following relations:

• The strict order relation P , iff x ≻P y and y 6≻P x.
• The exclusiveness relation +P , iff x 6≻P y and y 6≻P x.
• The interleaving order relation ||P , iff x ≻P y and y ≻P x.

The set BP = { P ,+P , ||P } is the behavioural profile of P .

Note that we say that a pair (x, y) is in reverse strict order, denoted by x −1
P y, if and

only if y P x. Further, the relations of the behavioural profile along with reverse strict
order partition the Cartesian product of activities [18]. We illustrate the relations of the
behavioural profile by means of our example model in Figure 1. Here, for instance, it
holds I D. Evidently, strict order does not imply the actual occurrence, i.e., activity D
might not be executed. It holds B +C as both activities will never occur in a single valid
execution sequence of the model, and C||F as C might occur before F and vice versa.
Note that it holds B||J due to the control flow cycle. An activity is either said to be
exclusive to itself (e.g., I + I) or in interleaving order to itself (e.g., B||B). The former
holds, when an activity cannot be repeated, whereas the latter implies that there may be
multiple executions of the activity.

The concept of a behavioural profile relates pairs of activities according to their order
of potential occurrence, whereas further behavioural characteristics are not considered. In
particular, causality between activities is not covered. Causality involves two orthogonal
aspects, i.e., the order of activity occurrences and their causal coupling (the occurrence of
one activity enforces the occurrence of another activity). The former is addressed by the
behavioural profile by the (reverse) strict order relation. The latter is not captured. To
cope with these aspects, the behavioural profile has been extended by a fourth relation
yielding the causal behavioural profile [19].

Definition 5 (Causal Behavioural Profile (Process Model)).
Let P = (A, ai, ao, C, F, T) be a process model.

• A pair (x, y) ∈ (A × A) is in the co-occurrence relation ≫P , iff for all execution
sequences σ = 〈n1, . . . , nm〉 in EP it holds that ni = x with 1 ≤ i ≤ m implies that
there is an index j ∈ {1, . . . ,m}, such that nj = y.

• The set B+
P = BP ∪ {≫P } is the causal behavioural profile of P .

Although not completely orthogonal, the co-occurrence relation of the behavioural profile
shows only minor interrelation with the relations of the behavioural profile. In fact, the
only conclusion that can be drawn relates to the co-occurrence of exclusive activities.
Two activities that are exclusive never appear together in an execution sequence, so that
they cannot be co-occurring.

Using the causal behavioural profile, we speak of causality between two activities
a1, a2 ∈ A, if they are in strict order, a1 P a2, and the occurrence of the first implies
the occurrence of the second, a1 ≫P a2. Again, we refer to the example in Figure 1 for
illustration purposes. In this model, three activities have to be executed in any completed
case, namely I,A, and O. Moreover, it holds C ≫ G and G ≫ C. Thus, all complete
execution sequences of the process model that contain activity C are required to also
contain activity G, and vice versa. In addition, the model specifies a strict order relation
between both activities, C G, such that we speak of a causal dependency from C to G.

7

Computation of the behavioural profile is done efficiently for sound process models
that do not contain control nodes of type or. Soundness is a correctness criteria often
used for process models that guarantees the absence of behavioural anomalies, such as
deadlocks or livelocks [24]. It has been defined for workflow nets, a structural class of
Petri nets. If a process model does not show or-type control nodes, it can be translated
into a free-choice workflow net following on common formalisations of process modelling
languages (see [25] for a survey). Hence, the soundness criterion can directly be applied
to the notion of a process model. Then, techniques introduced for the derivation of
behavioural profiles of sound free-choice workflow nets are reused. Those allow for the
computation of behavioural profiles in cubic time to the size, i.e., number of nodes, of the
model [18]. If certain structural assumptions are met, computation is even more efficient
when using structural decomposition techniques [19]. This approach is also leveraged in
order to compute the co-occurrence relation of the causal behavioural profile. Again, this
can be done in cubic time to the size of the model, if unstructured model fragments are
acyclic or do not show concurrency, see [19] for further details. While all these approaches
leverage structural information and, therefore, are restricted to a certain class of models,
a generic computation algorithm has been presented in [26]. This algorithm is based on
the notion of a Petri net complete prefix unfolding that represents the behaviour of the
net. Hence, it is applicable in the general case at the expense of computational complexity
as the construction of the prefix is an NP-complete problem. Nevertheless, this approach
can be combined with the aforementioned approaches so that it is to be applied solely for
rather small sub-parts of a process model.

4. Compliance Measures based on Behavioural Profiles

This section introduces compliance measures based on behavioural profiles. First,
Section 4.1 shows how the concepts introduced in the previous section can be lifted to
cases of a process log. Second, we elaborate on a hierarchy between the relations of the
behavioural profile in Section 4.2. We introduce measures for different compliance aspects
in Section 4.3. Finally, Section 4.4 elaborates on aggregations of these measures to arrive
at a single compliance value for a case.

4.1. Causal Behavioural Profiles for Cases of Process Logs

In order to lift the concept of behavioural profiles to cases of process logs, first and
foremost, we have to clarify the notion of weak order for cases. Following on the definition
given for process models, two activities are in weak order in a case, if the first occurs
before the second.

Definition 6 (Weak Order (Case)). Let c = 〈n1, . . . , nm〉 be a case and P = (A, ai,
ao, C, F, T) a process model with Ac ⊆ A. The weak order relation ≻c ⊆ (Ac×Ac) contains
all pairs (x, y), such that there exists two indices j, k ∈ {1, . . . ,m} with j < k ≤ m for
which holds nj = x and nk = y.

Based thereon, we define the behavioural profile of a case.

Definition 7 (Behavioural Profile (Case)).
Let c = 〈n1, . . . , nm〉 be a case and P = (A, ai, ao, C, F, T) a process model with Ac ⊆ A.
A pair (x, y) ∈ (Ac ×Ac) is in at most one of the following relations:

8

• The strict order relation c, iff x ≻c y and y 6≻c x.
• The exclusiveness relation +c, iff x 6≻c y and y 6≻c x.
• The interleaving order relation ||c, iff x ≻c y and y ≻c x.

The set Bc = { c,+c, ||c} is the behavioural profile of c.

Again, the pair (x, y) is in reverse strict order, denoted by x −1
c y, if and only if y c x.

The relations of the behavioural profile along with reverse strict order partition the
Cartesian product of activities of a case. For the example case c2 = 〈I, A,C,B,G, F,O〉,
e.g., it holds C c2 F and B −1

c2
A.

There are fundamental differences when interpreting the behavioural profile for a
process model and a case. On the one hand, in contrast to the profile of a process model,
exclusiveness between two activities can be observed in a case solely as a self-relation.
In other words, for all pairs of activities (x, y), for which we observe x + y in a case,
it holds x = y. On the other hand, activities that might be enabled concurrently in a
process model (e.g., C and F in our example) are related by interleaving order in the
behavioural profile of the model (C||F). However, if both activities are not executed
multiple times, they might be related by strict order or reverse strict order in the profile
of a corresponding case. For instance, for case c2 = 〈I, A,C,B,G, F,O〉, we observe
C c2 F as the behavioural relation for activities C and F .

We also lift the definition of a causal behavioural profile to cases. All activities of a
case are co-occurring.

Definition 8 (Causal Behavioural Profile (Case)).
Let c = 〈n1, . . . , nm〉 be a case and P = (A, ai, ao, C, F, T) a process model with Ac ⊆ A.

• The co-occurrence relation ≫c= (Ac × Ac) contains all pairs of activities in the
case.

• The set B+
c = Bc ∪ {≫c} is the causal behavioural profile of c.

4.2. A Hierarchy of Behavioural Relations

As mentioned above, there is a fundamental difference between behavioural profiles of
process models and of cases. The former defines relations based on the set of all possible
execution sequences, whereas the latter considers only one observed execution sequence
as defined by the case. We introduce a hierarchy between the relations of behavioural
profiles (we neglect the co-occurrence relation at this stage). The idea is to order the
behavioural relations based on their strength. We consider the exclusiveness relation
as the strongest relation, as it completely disallows two activities to occur together in
an execution sequence. In contrast, the interleaving order relation can be seen as the
weakest relation. It allows two activities to occur in any order in an execution sequence.
Consequently, the strict order and reverse strict order relation are intermediate relations,
as they disallow solely a certain order of two activities. We formalize this hierarchy
between behavioural relations as a subsumption predicate. Given two behavioural relations
between a pair of two activities, this predicate is satisfied, if and only if the first relation
is equal or weaker than the second.

Definition 9 (Subsumption Predicate).
Given two behavioural relations R,R′ ∈ { , −1,+, ||} of the same or different be-
havioural profiles, the subsumption predicate S(R,R′) is satisfied, iff (R ∈ { , −1

} ∧ R′ = +) or R = R′ or R = ||.
9

Again, we illustrate this concept using the example model in Figure 1 and case c2 =
〈I, A,C,B,G, F,O〉. As mentioned above, for activities C and F , it holds C||F in the
profile of the process model and C c2 F in the profile of the case. The former specifies
that C and F might occur in any order in an execution sequence, owing to the interleaving
semantics of activities that are enabled concurrently. The latter, in turn, captures the fact
that the occurrences of C and F in the case are ordered. However, we see that there is a
subsumption relation between both relations, as S(||, c2) is satisfied. This information
has to be taken into account when assessing compliance of cases. This stems from the
fact that a single case does not hint at the potential interleaving execution of activities.

4.3. Measures for Compliance Aspects

For our measurements of compliance between a process model and a case, we consider
two aspects separately, namely the order and causality of activity execution. These
aspects relate to the questions of what activities should be contained in the case and
how these activities should be ordered. This section shows how both aspects are assessed
by a separate compliance degree. First, order and exclusiveness of activity execution is
assessed by the degree of behavioural profile compliance. Second, causal dependencies
between occurrences of activities are measured by the degree of co-occurrence compliance.

Behavioural profile compliance. The order of execution of activities as specified by
a case should be in line with the ordering constraints as imposed by a process model. We
achieve a quantification of any behavioural deviation based on the notion of behavioural
profiles and the hierarchy of behavioural relations. We analyse the Cartesian product of
activities in a case and determine, whether the behavioural relation for a pair of activities
in the case is subsumed by the relation specified in the process model. Compliance
assessment based on the relations of the behavioural profile takes into account distinct
activities that are meant to be mutually exclusive. Those activities will be related by
the exclusiveness relation of the behavioural profile of the process model. Once these
activities occur in a case, they will be related by (reverse) strict order or interleaving
order in the behavioural profile of the case. Exclusiveness can be observed in a case solely
as a self-relation. Hence, the mutual execution constraint imposed by the process model
is counted as being violated.

We define two degrees of behavioural profile compliance that differ with respect to
their normalisation. First, the degree of model-relative behavioural profile compliance is
defined as the ratio of consistent behavioural relations relative to the number of activity
pairings in the case. This degree considers all activity pairs that occur in the case. Hence,
it directly depends on the number of activities of the process model that have been
executed already. Second, it may be argued that activity pairs that show interleaving
order in the process model should be neglected. Following on the argumentation given in
Section 4.2, interleaving order can be interpreted as the absence of any ordering constraint
as it allows for the occurrences in any order. In fact, a constraint of the process model
related to interleaving order cannot be violated by any case due to the subsumption
predicate. Therefore, we also define the degree of constraint-relative behavioural profile
compliance that is independent of the number of activities in the case, but depends on
the number of exclusiveness and strict order constraints imposed by the process model.
Behavioural profile compliance is defined as follows.

10

Definition 10 (Behavioural Profile Compliance).
Let c = 〈n1, . . . , nm〉 be a case and P = (A, ai, ao, C, F, T) a process model with Ac ⊆ A.

• The set of profile consistent case pairs PCc ⊆ (Ac×Ac) contains all pairs of activities
(x, y), for which the behavioural relation in c is subsumed by the relation in P , i.e.,
∀ R ∈ (BP ∪ { −1

P }), R′ ∈ (Bc ∪ { −1
c }) it holds (xRy ∧ xR′y) ⇒ S(R,R′).

• The degree of model-relative behavioural profile compliance of c to P is defined as

MBCc =
|PCc|

|Ac|2
.

• The degree of constraint-relative behavioural profile compliance of c to P is defined
as

CBCc =

{

1 if ||c = (Ac ×Ac),
|PCc \ ||c|

|(Ac×Ac) \ ||c|
else.

Both compliance degrees are between zero, i.e., no compliance at all with respect to
the behavioural profile, and one indicating full compliance. Computation of both de-
grees requires iteration over the Cartesian product of activities in the case. Hence, the
computation does not add to the complexity needed to derive behavioural profiles for
process models, cf., Section 3.2. Given case c2 = 〈I, A,C,B,G, F,O〉 and our initial
example (cf., Figure 1), we see that an order constraint imposed by the model is not
satisfied. That is, F G is specified in the model, whereas we have F −1

c2
G in the

profile of the case. In addition, the given case violates constraints on mutual exclusion of
activity execution. The process model defines B + C, B + F , and B + G, whereas we
have B −1

c2
C, B −1

c2
F , and B −1

c2
G in the case. Quantification of these violations

relative to the number of considered activities yields a degree of model-relative behavioural
profile compliance of MBCc2 = 41

49 ≈ 0.84 for this particular case. Once constraints on
interleaving order are neglected, we derive a degree of constraint-relative behavioural
profile compliance of CBCc2 = 38

46 ≈ 0.83. Here, the interleaving order defined by the
process model between activities C and F as well as for B in relation to itself are not
considered in the compliance assessment.

Co-occurrence Compliance. Beyond execution order and exclusiveness, causal
dependencies between activities have to be taken into account. As discussed in Section 3.2,
causality of activity execution comprises two orthogonal aspects, the order of activity
occurrences and their causal coupling. In the causal behavioural profile, the former is
addressed by the relations of the behavioural profile, while the co-occurrence relation
captures the latter aspect. For any compliance assessment of a case, therefore, the
former aspect is considered in the behavioural profile compliance. Consequently, a second
compliance measure is introduced to cope with the co-occurrence constraints that are
induced by the process model. Informally, we check whether all activities for which the
occurrence is implied by the current state of the case are in the case as well.

In general, the ratio of co-occurrence constraints of the process model that are met
in the case and all co-occurrence constraints would be a straight-forward measure for
this aspect. However, we want to consider also cases that may not have completed yet,
such that activities that are missing according to a co-occurrence constraint might be
added later on. Hence, not all co-occurrence constraints of the process model are required
to be met in the case. Instead, we consider only those activities that are required to be

11

in the case by a co-occurrence constraint, for which we can deduce from the case that
they should have already been observed. That is, an activity is considered, if it is either
in the case, or it is in strict order with one of the activities in the case. Consider case
c4 = 〈I, C,E〉 of our initial example. The process model in Figure 1 specifies that an
occurrence of activity I implies an occurrence of both, activities A and O. Activity A is
not in the case although we know that it should have been observed already owing to the
strict order relation between A and both activities, C and E. The mandatory activity O,
in turn, is not required to occur in the case, as the case does not contain any activity
that is in strict order with O.

Besides the question of incomplete cases, the normalisation of a degree of co-occurrence
compliance deserves further discussion. Again, the normalisation may be based either
on the number of constraints imposed by the process model, or the number of activities
in the case. First, the degree is normalised by the number of potential co-occurrence
constraints. We refer to this degree as model-relative co-occurrence compliance. Second,
the degree is normalised based on the number of constraints. Then, the constraint-relative
degree is the ratio of the satisfied co-occurrence constraints and all actual co-occurrence
constraints for activities that are in the case or can be expected to be in the case. Both
degrees of compliance for co-occurrence constraints are formalised as follows.

Definition 11 (Co-Occurrence Compliance).
Let c = 〈n1, . . . , nm〉 be a case and P = (A, ai, ao, C, F, T) a process model with Ac ⊆ A.

• The set of expected case activities EAc ⊆ A contains all activities that are in the
case or that can be expected to be in the case, i.e., EAc = Ac ∪ {a ∈ A | ∃ b, d ∈
Ac [a P d ∧ b ≫P a ∧ (b = d ∨ b P d)]}.

• The set of expected case activity pairs EPc ⊆ (A×A) is defined as EPc = (EAc ×
Ac) \ idAc

.
• The degree of model-relative co-occurrence compliance of c to P is defined as

MCCc =
|(EAc ×Ac) \ idAc

∩ ≫P |+ |EPc \ ≫P |

|EPc|
.

• The degree of constraint-relative co-occurrence compliance of c to P is defined as

CCCc =

{

1 if ≫P= ∅,
|(EAc×Ac)\idAc

∩ ≫P |
|EPc ∩ ≫P | else.

Computation of both degrees requires to determine the set of expected case activities.
As these activities are identified by analysing relations between three activities, this
step requires at most iteration over the triples of all activities in the process model.
Hence, it requires cubic time with respect to the size of the model. Once this set is
determined, the degrees are derived by iterating at most over the Cartesian product of
activities of the model. Again, we conclude that the computation of these degrees does
not add to the complexity needed to derive behavioural profiles for process models, cf.,
Section 3.2. We illustrate co-occurrence compliance using our initial example and case
c2 = 〈I, A,C,B,G, F,O〉. We see that, for instance, C ≫ D is not satisfied. This is
penalised as the case contains G and it holds D G in the process model. In other
words, the occurrence of G in the case provides us with evidence that we should have
observed D, too. The same holds true for activity E, which can be expected to be in

12

the case. Computation of the model-relative degree of co-occurrence compliance yields a
value of MCCc2 = 64

72 ≈ 0.89. Here, eight constraint violations are assessed relative to the
number of potential co-occurrence constraints. For instance, the activity pair (C,A) is
taken into account even though it holds C 6≫ A. Computation of the constraint-relative
degree of co-occurrence compliance, in turn, yields a value of CCCc2 = 36

44 ≈ 0.82. That is,
36 out of 44 co-occurrence constraints of activities that can be expected to be in the case
are satisfied. For case c4 = 〈I, C,E〉, the absence of activity A is penalised. From the
co-occurrence constraint I ≫ A we deduced that activity A is mandatory for completing
the process, i.e., it is a mandatory activity. Due to the constraint A C, we also know
that activity A should have been observed already in the case. For this case, we compute
compliance values of MCCc4 = 9

12 = 0.75 and CCCc4 = 5
8 ≈ 0.63, respectively.

It is worth to mention that the co-occurrence compliance degree might be overestimated.
An example for this phenomenon would be the case 〈I, A, J〉 for the model in Figure 1.
There is a causal coupling J ≫ B in this model. However, the absence of B would not be
penalised as there is no activity in the case that is in strict order with B and, therefore,
would provide us with sufficient evidence that B should have already been observed.

4.4. Aggregated Compliance Measures

The compliance degrees for the separate compliance aspects introduced in the previous
section are the foundation for aggregated measures for the compliance of case. Such an
aggregated measure is defined as the sum of the enumerators divided by the sum of the
denominators of the respective degrees. Hence, differences in the denominators are taken
into account.

The first compliance measure combines the two constraint-relative compliance measures.
Here, differences in the denominators stem from the fact that activities that are not
contained in the case but are expected to be there are considered in the co-occurrence
compliance, but not in the behavioural profile compliance.

Definition 12 (Constraint-Relative Case Compliance).
Let c = 〈n1, . . . , nm〉 be a case and P = (A, ai, ao, C, F, T) a process model with Ac ⊆ A.
Let PCc be the set of profile consistent case pairs, EAc the set of expected case activities,
and EPc the set of expected case activity pairs. The constraint-relative case compliance
of c to P is defined as

CCc =

{

1 if (≫P= ∅) ∧ (||P = (Ac ×Ac)),
|PCc \ ||c| + |(EAc×Ac)\idAc

∩ ≫P |
|(Ac×Ac) \ ||c| + |EPc ∩ ≫P | else.

Model-relative case compliance builds upon the model-relative measures for behavioural
profile compliance and co-occurrence compliance. Again, differences in the denominators
may stem from activities that are not in the case, but are expected to be there.

Definition 13 (Model-Relative Case Compliance).
Let c = 〈n1, . . . , nm〉 be a case and P = (A, ai, ao, C, F, T) a process model with Ac ⊆ A.
Let PCc be the set of profile consistent case pairs, EAc the set of expected case activities,
and EPc the set of expected case activity pairs. The model-relative case compliance of c
to P is defined as

MCc =
|PCc| + |(EAc ×Ac) \ idAc

∩ ≫P |+ |EPc \ ≫P |

|Ac|2 + |EPc|
.

13

Table 1: Compliance results for the cases of the initial example (cf., Section 2)

CBC MBC CCC MCC CC MC
Case Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel.

Beh. Profile Beh. Profile Co-Occurrence Co-Occurrence Compliance Compliance

c1 = 〈I, A,E,C,D, F,G,O〉
1.00 1.00 1.00 1.00 1.00 1.00

c2 = 〈I, A,C,B,G, F,O〉
0.83 0.84 0.82 0.89 0.82 0.87

c3 = 〈I, A,B, J,H,B,O,G〉
0.80 0.84 0.69 0.85 0.74 0.85

c4 = 〈I, C,E〉
1.00 1.00 0.63 0.75 0.80 0.86

c5 = 〈F,C,D,G〉
1.00 1.00 0.50 0.62 0.64 0.72

Applied to our example process model and the five exemplary cases introduced in Section 2,
our compliance measures yield the results illustrated in Table 1. As expected, the first
case c1, which represents a valid execution sequence of the process model satisfies all
constraints, such that our measures indicate full overall compliance. In contrast, the
constraints induced by the relations of the behavioural profile of the process model are not
fully satisfied in the second case c2 (e.g., the exclusiveness in the model between B and
C is broken in the case). In addition, the co-occurrence dependencies are not completely
respected in the case either, as discussed above. For case c3, similar observations can be
made leading to overall compliance values between 0.74 and 0.85. Here, the differences
in the normalisation of our two aggregated compliance measures become visible. An
assessment that is relative to the size of the executed part of the process model leads to a
higher compliance value. That is due to the fact that pairs of activities, for which there
is no explicit constraint in the process model, lower the impact of activity pairs with
violated constraints. Regarding case c4, we already discussed the absence of activities
that are mandatory for completion of the process and, therefore, should be contained in
the case. We see that this deviation impacts on the compliance degrees that consider the
co-occurrence relation. The compliance degrees based on the behavioural profile equal
one, as case c4 does not violate any ordering or exclusiveness constraints. Similarly, case
c5 shows full behavioural profile compliance as the ordering constraints imposed by the
process model are satisfied. Still, case c5 is incomplete as it represents a valid subtrace of
the process model, whereas the first part of the case (comprising activities I, A, and E) is
missing. Consequently, various co-occurrence constraints that impact on the compliance
values are violated.

The compliance measures based on the relations of the behavioural profile (CBC and
MBC) are largely independent of those that rely on the co-occurrence relation (CCC and
MCC). This follows from the fact that, besides one exception, the respective behavioural

14

relations are orthogonal, cf., Section 3.2. Therefore, the aggregated measures (CC and
MC) should be used in order to assess compliance by taking the complete spectrum of
constraints as imposed by the causal behavioural profile into account.

Regarding the actual compliance values obtained with the proposed measures, conclu-
sions can only be drawn against the background of a concrete process and environment.
There is a variety of factors that influence the question whether or not a certain degree
of non-compliance is acceptable. The severity of the implications that follow from non-
compliance behaviour and the reliability of the logging mechanism would be examples for
such factors.

5. Compliance Measurement and Noise

Compliance measurement builds on the assumption that a normative process model
exists and that the process log gives an accurate account of how individual cases have
been processed. Research on process mining has acknowledged the existence of noise in
real-world log and implemented measures to deal with it. Noise stems among others from
inaccurate logging mechanisms in information systems or race conditions when writing
two log entries. Also, the execution order of activities may not be enforced explicitly
or people may deliberately work around the system. A classification of noise patterns
has been introduced by Weijters et al. [27], which has been extended by Günther [28].
Based thereon, we distinguish two major categories of noise: missing parts of traces and
perturbation. We use these categories to discuss the impact of noise on the compliance
measurement results.

Missing parts of a trace are due to the fact that the logging mechanism of a process-
aware information system was not available from a particular period of time. In case of
a missing head, the recording started only after the case was already in processing; a
missing trail can result when cases are still processed when the analysis period is closed;
and a missing episode might stem from a temporarily deactivated logging mechanism (see
Figure 2). These three cases have in common that a part of the original trace is missing.
Obviously, this category of noise does not change the order between activities in the trace.
Therefore, the behavioural profile compliance measures are not affected by this kind of
noise. In contrast to that, the co-occurrence measures are penalized by missing parts.
This penalty depends on how many co-occurrence relations exist between the activities of
the missing part and the rest of the trace.

Perturbation involves a wrong recording of activity order, the wrong recording of
an additional event, or the recording of alien events. These perturbations affect the
compliance measures to a different degree. Consider the case that two events are recorded
in wrong order, for instance due to a race condition in the logging mechanism (see
Figure 3, top). If there is an order constraint between these two activities, we now observe
a violation in the perturbed trace. If both were in interleaving order anyways, then the
compliance degree is not affected. In the same vein, ordering constraints between the
two perturbed activities and the activities that occur between them are affected. We
observe violation, if an activity was not in interleaving order, but in strict order with
one of the perturbed activities. Co-occurrence constraints are not violated by this kind
of noise, as the set of activities in the case does not change. Figure 3, middle, shows
the case of an additional record of an event. In this case, the perturbed trace shows
violations for all activities between the first and the second record if an order constraint

15

Original Trace

Noisy Trace

A B C D E F G H J K L M N

A B C D E F G H J Missing Tail

Original Trace

Noisy Trace

A B C D E F G H J K L M N

Missing Head E F G H J K L M N

Original Trace

Noisy Trace

A B C D E F G H J K L M N

Missing Episode K L M NA B C D

Figure 2: Types of Noise with Missing Parts of the Trace

was defined between them and the repeated activity. Again, co-occurrence relations
are not violated. In case an alien event is record (see Figure 3, bottom), neither order
relations nor co-occurrence relations are violated.

Altogether, it can be noted that behavioural profile compliance is robust against noise
in terms of missing parts of traces and alien events. Co-occurrence compliance is robust
against perturbation noise. In case the impact of noise matters, it depends on the size of
the missing part and on the number of perturbed events.

6. Diagnostic Information on Non-Compliance

The measures introduced in Section 4 give us an overall insight into the compliance of
a single case in its relation to a normative process model. In order to identify reasons
for non-compliant processing, diagnostic information on compliance violations has to
be derived. In particular, the root cause of a compliance violation should be identified.
First, we discuss concepts for such a root cause analysis on the level of a single case in
Section 6.1. Then, Section 6.2 turns the focus on diagnostic information for a process log.

6.1. Root Cause Analysis for a Single Case

To identify reasons for non-compliant processing in a single case, first and foremost, it
has to be known which kind of violations are observed. Such feedback is given as a set of

16

Original Trace

Noisy Trace

A B C D E F G H J K L M N

A B C K E F G H J

Perturbed Order

D L M N

Original Trace

Noisy Trace

A B C D E F G H J K L M

A B C B

Additional Event

D E F G H J K L M

Original Trace

Noisy Trace

A B C D E F G H J K L M

A B C X

Alien Event

D E F G H J K L M

Figure 3: Types of Noise with Perturbation

triples, referred to as compliance violation triples, each consisting of a pair of activities
along with the violated constraint, i.e., a relation of the causal behavioural profile. Against
the background of our pairwise compliance assessment, feedback on non-compliance in
a case is also given for single activities. That is, for each activity we count the number
of constraint violations in which this activity is involved. As a single non-compliant
execution of an activity may result in various constraint violations related to this activity,
this kind of feedback highlights activity executions that are most problematic in the sense
that they heavily impact on the overall compliance measures. The ratio between the
violated constraints that relate to a certain activity and all violated constraints is referred
to as the compliance violation impact of the activity. This value measures how much of
the observed compliance violation is related to the respective activity.

Definition 14 (Compliance Violation Triple and Impact).
Let c = 〈n1, . . . , nm〉 be a case of a process model P = (A, ai, ao, C, F, T) and B+

P the
causal behavioural profile of P . Let PCc be the set of profile consistent case pairs and
EAc the set of expected case activities.

• The set of compliance violation triples Vc ⊆ (A×A× B+
P) for c contains all pairs

(x, y,R) such that (x R y) and either (x, y) /∈ PCc or (x ∈ EAc ∧ x ≫c y ∧ x 6=
y ∧ y /∈ Ac).

17

Table 2: Feedback on non-compliance for case c3 of the example (cf., Section 2)

c3 = 〈I, A,B, J,H,B,O,G〉

Compliance (F,C,≫),(C,F,≫),(G,D,≫),(F,E,≫), (G,E,≫),
Violation Triples (D,F,≫),(F,D,≫),(E,C,≫),(E,D,≫),(C,E,≫),

(G,F,≫),(E,F,≫), (D,C,≫),(G,C,≫),(D,E,≫),
(C,D,≫), (H,G,+),(J,G,+),(B,G,+),(G,B,+),
(G,J,+),(G,H,+),(O,G, −1),(G,O,)

Compliance VI(G) = 0.5
Violation Impact VI(D) = VI(E) = VI(C) = VI(F) = 0.29

VI(B) = VI(H) = VI(J) = VI(O) = 0.08

• The compliance violation impact of an activity a ∈ A is defined as

VI(a) =
|{(x, y,R) ∈ Vc | x = a ∨ y = a}|

|Vc|
.

As illustrated in Table 1, four out of five of our example cases show overall compliance
values below one. Table 2 depicts the compliance violation triples for case c3. Those
indicate the concrete problems that have been found for the case. In addition, we also
illustrate the compliance violation degrees of single activities. Evidently, the execution of
activity G is most problematic for case c3. Half of the violated constraints relate to this
activity, so that its execution can be seen as the root cause for the non-compliance of this
particular case.

6.2. Root Cause Analysis for a Process Log

By applying our compliance measures to all the cases of a process log and computing
their average values, we establish an understanding of overall compliance of our process
execution. In this case, feedback on non-compliance should not be limited to single cases.
Instead, the frequency with which certain violations are observed has to be known in order
to identify the reasons for non-compliant processing in general. In addition, dependencies
between compliance violations can also be seen as valuable information on non-compliance.
That is due to the fact that a certain violation may simply be caused by another violation
that happened before.

In order to address the need for aggregated analytic information on non-compliance for
a process log, we focus on violation triples as introduced in the previous section for a single
case. Further, we adapt the notions of support and confidence known from the field of
association rules mining [29, 30]. The common formalism used for association rules mining
identifies patterns that are built of items given a set of transactions. These transactions,
in turn, are built of items. Adapted to our setting, a transaction is represented by a
single case, while an item is a certain constraint violation that may be observed in a case.
We define the support for a dedicated compliance violation triple as the number of cases
in a log in which it can be observed.

18

Table 3: Compliance violations (support > 1) for the example log

Compliance Violation Pairs Support

(C,E,≫),(D,E,≫),(G,E,≫),(F,E,≫) 3

(G,D,≫),(B,G,+),(E,D,≫),(C,D,≫),(I,A,≫),
2

(E,A,≫),(F,D,≫),(G,B,+),(C,A,≫)

Definition 15 (Support for Compliance Violation).
Let C = {c1, . . . , cn} be a log of a process model P = (A, ai, ao, C, F, T).

• The set of logs supporting a compliance violation triple v ∈ (A×A× B+
P) in C is

defined as SU(v) = {ci ∈ C | v ∈ Vci}.
• The support for a compliance violation triple v ∈ (A×A× B+

P) in C is defined as
sup(v) = |SU(v)|.

Table 3 shows the compliance violation triples with support more than one for the cases
of the example log introduced in Section 2. It illustrates that there are four compliance
violation triples that relate to three out of the five cases. Moreover, all of them represent
violations of co-occurrence dependencies that imply the execution of activity E. This
observation, in turn, provides a starting point for the analysis of the respective process.
The reasons for missing executions of activity E have to be determined as root causes for
non-compliant processing.

While the support for compliance violation triples helps to separate frequent and rare
compliance violations, the analysis of non-compliance is more effective if dependencies
between violations are taken into account. A deviation from the processing as specified
in the process model might cause several subsequent violations of the defined control flow.
Such dependencies stem from data dependencies between activities that are often not
explicitly captured in the process model. In order to detect these dependencies and focus
on the actual cause of a series of compliance violations, we adapt the notion of confidence
of association rules. Confidence relates rules between items to their statistical significance
and, therefore, reflects the strength of a rule. In our setting, a rule is an implication
between two compliance violation triples, for which we define confidence as follows.

Definition 16 (Confidence for Compliance Violation Rule).
Let C = {c1, . . . , cn} be a log of a process model P = (A, ai, ao, C, F, T). For two distinct
compliance violations triples v1, v2 ∈ (A × A × B+

P) the confidence for a violation rule
from v1 to v2 is defined as

conf(v1 ⇒ v2) =

{

0 if sup(v1) = 0,
|SU(v1)∪SU(v2)|

sup(v1)
else.

Analysis of compliance violation rules is reasonable solely for compliance violation triples
for which the support exceeds a certain threshold in the process log. This threshold has
to be defined depending on the number of cases in a log, even though it may be adapted

19

D>>E

F>>E

G>>E

C>>E

C>>D

B+G

G+B

E>>D

C>>A

I>>A

G>>D

F>>D

E>>A

Figure 4: Rules between compliance violation triples (confidence > 0.6) for the example log in Section 2

as a part of the analysis. Similarly, rules that exceed a certain threshold with respect to
their confidence should be investigated.

Figure 4 depicts the rules between compliance violation triples for the example log
introduced in Section 2. Here, nodes depict compliance violation triples that show a
support larger than one (i.e., those that are listed in Table 3), while the node size reflects
the different support values. Edges represent rules between compliance violation triples
for which the confidence value is above the threshold of 0.6. Again, the edge strength
depends on the confidence value. In our example, all except for one rule show a confidence
value of one. That is, the occurrence of the source compliance violation triple always
implies the occurrence of the target compliance violation triple. Note that we did a
transitive reduction for the edges in the graph. A transitive reduction is not unique
in case of a cyclic graph, while identification of the minimal transitive reduction is an
NP-complete problem [31]. In order to provide an overview of the interplay of compliance
violation rules, however, one non-minimal reduction is sufficient. When interpreting the
results, we see that there are two independent clusters of compliance violation triples
that manifest in disconnected subgraphs. These cluster represent compliance violations
that occur independent from each other and, therefore, have to be analysed separately.
Focussing on the bigger subgraph, we see that the compliance violation related to the
co-occurrence between activities C and D implies various other compliance violations.
Although this violation cannot be seen as the only root cause (it is part of a cycle of
compliance violation rules), there is some evidence that this violation is fundamental and
many other violations are causally dependent. Hence, the implementation of the process
should be investigated for reasons that break the causality between activities C and D.

20

Customer

extension (CE)

Issue

details (ID)

Resolution

plan (RP)

Change

management (CM)

Monitor target

dates (MTD)

Risk management

(RM)

Proposal to

close (PTC)

Close

issue

(CLI)

Reject

PTC

Create

issue

(CRI)

Figure 5: BPMN model of the Security Incident Management Process (SIMP)

We restricted our discussion on rules between two compliance violation triples. How-
ever, the introduced concepts may be lifted to rules between more than two compliance
violation triples in a straight-forward manner.

7. Case Study: Security Incident Management Process

To demonstrate and evaluate our approach, we implemented all introduced concepts
in a prototypical tool and applied it in a case study on the Security Incident Management
Process (SIMP). In this section, first, we give background information on this process.
Second, we present the results for a process log using the compliance measures introduced
in this paper and discuss related measures. Third, the concepts introduced for the root
cause analysis of non-compliance are applied to the log.

Background. SIMP is an issue management process used in global service delivery
centres. The process and the log have been minimally modified to remove confidential
information. Figure 5 shows the BPMN model of SIMP solicited from domain experts.

SIMP is used in one of IBM’s global service delivery centres that provides infrastructure
management and technical support to customers. When a customer reports a problem or
requests a change, an issue is created, spawning a new instance of the process. Details
about the issue may be updated, a plan to resolve the issue must be created, and change
management related activities may be performed if required. Then, target dates for
issue resolution may be monitored and relevant risks may be documented. A Customer
Extension of target dates may be processed during any of the above activities (parallel
path). Once the steps for resolution are taken and verified, the resolver must propose to
close the issue. Based on the evidence that the issue is indeed resolved, the issue creator
may close the issue. Otherwise, the proposal must be rejected.

For the SIMP, we analysed 852 cases, each consisting of a set of log entries. Such a
log entry has an activity name, activity description, and the time-stamp marking the
time of execution of the activity. Although the process is standardized and documented,
it is not orchestrated via workflow tools in the IBM’s global service delivery centre under
investigation. Instead, it is manually carried out. Hence, the employees are free to deviate
from the process. As a result, the cases may or may not specify valid execution sequences
of the process model. The process log has been created using a proprietary tool, in which
an employee submits the execution of a certain activity. Correlation of log entries to cases
has been managed explicitly by the logging tool.

21

Table 4: Compliance results for the SIMP derived from 852 cases

CBC MBC CCC MCC CC MC
Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel. Constr.-Rel. Model-Rel.

Beh. Profile Beh. Profile Co-Occurrence Co-Occurrence Compliance Compliance

Avg 0.98 0.99 0.96 0.96 0.97 0.97
StDev 0.06 0.04 0.11 0.09 0.08 0.069
Min 0.08 0.31 0.60 0.60 0.53 0.58
Max 1.00 1.00 1.00 1.00 1.00 1.00
Share of Compliant Cases

78.64% 78.64% 84.39% 84.39% 76.29% 76.29%

Compliance Measures. For each case, we analysed its compliance using the mea-
sures proposed in this paper. Table 4 gives a summary of this analysis in terms of
the average compliance value of all cases (using the arithmetic mean) along with the
standard deviation, the observed minimal and maximal compliance values, and the share
of fully compliant cases. The latter show a value of one for all compliance degrees. The
compliance values were discussed with the manager of the process. The average values
reflect the manager’s perception that SIMP is running satisfactory and most cases are
handled in a compliant way. While up to a quarter of the cases does represent fully
compliant behaviour, the high average values and the low standard deviation for our
compliance measures indicate that there are solely marginal deviations in most cases. Still,
as the minimum values show, it was also possible to identify cases of very low compliance.
Here, behavioural compliance values of 0.08 or 0.31 represent outliers that have been
caused by a case that mixed the log entries for two separate process instances. Moreover,
it is interesting to see that the different normalisations, either based on the number of
constraints or the considered process model fragment, does not impact on the compliance
values for our case study significantly.

We are not able to directly compare our results with the fitness measure proposed
in [10] and discussed in detail in Section 2. This is mainly due to the inherent complexity
of the state space exploration, which is exponential in the general case. Even a maximally
reduced Petri net of our SIMP contains a lot of silent steps owing to several activities,
for which execution is optional. That, in turn, leads to a significant increase of the state
space to investigate when trying to replay a case. While compliance values might still
be derived following the most greedy strategy, these results are of a limited validity as
they highly underestimate the degree of compliance. However, it is worth to mention that
even with the most greedy strategy, computation of the compliance values for the process
log took around 15 seconds. In contrast, computing the compliance measures proposed
in this paper for the process log, in turn, was done within milliseconds. Moreover, an
isolated analysis of a sample of 30 cases for which computation of the fitness measure is
possible with a 5-step-ahead strategy revealed that the fitness compliance values are all
lower than the values derived by our measures. This is in line with the criticism of [17]
that the fitness concept appears to be rather strict.

The differences between the fitness values and our compliance values stem from the

22

Table 5: Feedback on non-compliance for a dedicated case

Compliance (CLI,CLI,+),(CM,CE,≫),
Violation (CRI,CE,≫),(RPTC,CE,≫),
Triples (CLI,CE,≫),(PTC,CE,≫),(RP,CE,≫)

Compliance VI(CE) = 0.86
Violation VI(CLI) = 0.29
Impact VI(RP) = VI(CM) = 0.14

VI(CRI) = VI(RPTC) = VI(PTC) = 0.14

20

30

40

50

60

70

80

N
u

m
b

e
r

o
f

C
a

s
e

s

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

e
r

o
f

C
a

s
e

s

Number of Compliance Violations

Figure 6: Number of cases (out of 852) for which we observed a certain number of compliance violation
triples

particular grounding of the compliance measures. We illustrate this aspect using case
c4 = 〈I, C,E〉 of our initial example. In Section 2, we discussed that the fitness for this
case is 0.33, whereas Section 4.4 shows that we derive aggregated compliance values of
0.80 or 0.86, respectively. In this case, the absence of a single activity A is the source of
compliance violation. In the computation of the fitness measure, such a single violation
may impact on a large number of activities in the case (or even all activities), i.e., it may
lead to a large number of non-compliant activity executions. In contrast, such a violation
impacts solely on the relations between the respective activities in the computation of our
compliance measures, while the relations between the remaining activities are assessed
independently. Hence, our compliance measure tend to yield higher compliance values.

Root Cause Analysis. We collected the compliance violation triples for all cases of
the log for which we observed an overall compliance value (using constraint-relative or
model-relative normalisation) below one. Figure 6 gives an impression on the amount
of the collected violation triples and how they are distributed over the cases. For each
number of compliance violation triples, the chart depicts the number of cases in the
collection that showed an according number of violations. For nearly 70 cases we observe
solely a single constraint violation. Further, at most 15 compliance violations are detected
in a single case. Hence, we conclude that in our setting, the set of violated constraints for
single case can still be handled by a process analyst.

23

Table 6: Compliance violations (support > 20) observed in the set of 852 cases

Compliance Violation Pairs Support

(CLI,CLI,+) 177
(CRI,RP,≫),(CE,RP,≫),(CLI,RP,≫),(PTC,RP,≫) 109
(CRI,CE,≫),(CLI,CE,≫),(PTC,CE,≫),(RP,CE,≫) 74
(CM,CE,+) 35
(CM,RP,+) 34

In order to demonstrate the application of the concepts to support root cause analysis
for a single case, Table 5 depicts the compliance violation triples for a dedicated case
along with the compliance violation impact of the contained activities (see Figure 5 for
the resolution of the activity abbreviations). The chosen case has an overall compliance
value of 0.86 or 0.91, depending on the applied normalisation. Hence, the case is a typical
example for a non-compliant case that shows minor behavioural deviations from the
normative process model. Evidently, there is a single activity that participates in more
than 80% of the violated behavioural constraints. The activity representing the customer
extension (CE) can, therefore, be seen as the root cause of the compliance violation.
The compliance violation triples also indicate the type of violation that is related to this
activity. The violated co-occurrence constraints all require the occurrence of activity CE,
so that the absence of this activity causes most of the compliance violation. The fact that
the absence of activity CE does not explain the whole compliance violation is due to the
violated exclusiveness for the activity close issue (CLI) in relation to itself. That is, the
case comprises two log entries that report an execution of this activity even though the
process model allows for at most one execution.

We demonstrate the root cause analysis just for one exemplary case. However, a
review of our results suggests that similar observations can be made for most of the
non-compliant cases.

Turning the focus on the root cause analysis for the whole process log, Table 6 lists
the compliance violation triples with the highest support in the set of 852 cases. The
deviation from the process model that is observed most frequently relates to the activity
close issue. While it can be executed at most once in the process model, 177 cases record
at least two executions of this activity. Moreover, in a large number of cases, co-occurrence
relations that require the presence of the activity representing the resolution plan (RP)
or the customer extension (CE) are violated. Although both activities are mandatory
for the completion of the process according to the process model in Figure 5, they are
absent in a large number of cases. Based on these results, the necessity to deviate from
the standard processing for closing an issue and the potential to skip the execution of
activities RP and CE under certain circumstances can be evaluated by the management
of the Security Incident Management Process. Still, any judgement on whether these
deviations are acceptable can only be done once the reasons for repeating or skipping
the respective activities have been investigated in the concrete cases. Such investigations
have not yet been complete for SIMP as illustrated in this case study.

Finally, the identified dependencies between the identified compliance violations are

24

CLI+CLI

CM>>RP

CLI>>CE

CE>>RP

CM>>CE

PTC>>RP

CRI>>CE

CLI>>RP

CRI>>RP

RP>>CE

PTC>>CE

Figure 7: Rules between compliance violation triples (confidence > 0.6) observed in the set of 852 cases

visualised in Figure 7. In this graph, nodes depict compliance violation triples with a
support larger than 20 in the collection of 852 cases, while edges represent rules between
them that have a confidence above the threshold of 0.6. Again, the node size reflects
the support values, while the edge strength correlates with the confidence value. The
graph suggests that the violation of the exclusiveness constraint for activity close issue
(CLI) is independent of the other frequently observed violations. Further, the violations
of the co-occurrence constraints related to activities RP and CE build clusters of rules of
high confidence. Hence, these violations always occur together in a case. Still, we see
that both clusters are rather independent of each other. We conclude that the absence of
activities RP and CE, along with the constraint related to activity CLI, have to be seen
as independent root causes of the non-compliant behaviour in our process log.

8. Related Work

Compliance measures are at the core of process mining that aims at automatic
construction of a process model from a process log [1, 2, 3, 4, 5]. Similar relations, but
not exactly those of behavioural profiles, are used in [32] to characterise a process as
a pre-processing step for deriving a model. Please refer to [19] for a discussion of the
conceptual differences between the relations used in [32] and those of the behavioural
profile.

As mentioned before, there are various different approaches for measuring compliance
of a log in the sense of its fitness. That is, the share of cases that can be replayed in the

25

process model can be used as a compliance measure [11, 12]. Beyond these coarse-grained
approaches, a case may be replayed step-wise to quantify the number of execution steps
that conform to the process model semantics [9, 10, 13]. All of these approaches are based
on state concepts and, hence, have to cope with the state explosion problem. In this
paper, we demonstrated that our approach benefits from the efficient calculation of the
behavioural profiles from free-choice process models as defined in [18, 19], cf., Section 3.2.
Therefore, in contrast to the classical fitness calculation, our measures can be computed
within milliseconds. Further, our case study provided us with evidence that our measures
are close to managers’ perception of compliance.

The visualisation of log data to enable effective analysis has been addressed in recent
work. In [33], the authors advocate the application of a dotted chart analysis to assess the
performance of business operations with a focus on their time dependencies. Such a chart
supports the manual analysis of long-running instances, in particular. Another approach
leverages multi sequence alignment techniques known from bioinformatics to construct a
so called trace alignment [34]. Once such an alignment between cases has been established,
patterns of common behaviour and rare deviations may be identified. The drawback of
this approach is the inherent complexity as finding an optimal alignment for a set of cases
is a computationally hard problem. Nevertheless, [34] already showed the application of
the technique in two case studies. As such an alignment assumes a different perspective
compared to our feedback on behavioural constraint violations, both approaches can be
seen as complementary. Further, the detection of differences between process models, not
logs, is also discussed in related work. The approaches presented in [35, 36] provides a
systematic framework of diagnosis and resolution of such mismatches.

The concept of behavioural profiles in general relates to different notions of behavioural
equivalence such as trace equivalence and bisimulation. These notions build on state
concepts, which means that they cannot be decided efficiently in the general case. They
also yield only a true or false answer and they are not directly applicable to execution
sequences [37, 38]. Behaviour inheritance is closely related to these notions. Basten et
al. [39] define protocol inheritance and projection inheritance based on labelled transition
systems and branching bisimulation. A model inherits the behaviour of a parent model,
if it shows the same external behaviour when all actions that are not part of the parent
model are either blocked (protocol inheritance) or hidden (projection inheritance). Similar
ideas have been presented in [40, 41]. The boolean characteristics of these notions have
been criticized as inadequate for many process measurement scenarios [10].

The question of process similarity has been addressed from various angles. Focussing
on behavioural aspects, [42, 43] introduce similarity measures based on an edit distance
between workflows. Such an edit distance might be based on the language of the workflow,
the underlying automaton, or based on the n-gram representation of the language. A
similar approach is also taken in [44], in which the authors measure similarity based on
high-level change operations that are needed to transform one model into another. Close
to our behavioural abstraction of a behavioural profile are causal footprints as introduced
in [45]. The authors also show how the footprints can be leveraged to determine the
similarity between process models. All these similarity notions are either expensive in
terms of calculation, whereas behavioural profiles can be calculated efficiently for a broad
class of models.

The compliance of workflow executions with normative process models is also an
important aspect of role-based access control (RBAC). In essence, role-based access

26

control deals with the specification and enforcement of constraints that relate to order
and exclusiveness of roles or subjects executing particular activities of a workflow. Such
constraints include among others separation of duty requirements. Separation of duty
implies that either particular activities have to be exclusive altogether, or that those roles
or subjects executing a pair of activities have to be exclusive (also referred to as four-eyes
principle) [46, 47, 48]. The major share of research in this area has focussed on the
specification and verification of RBAC policies [49, 50, 51], among others on consistency
and satisfiability of constraint sets [52, 53], as well as on engineering and enforcement
by design [54]. Log files have been used for mining roles in this area [55, 56], while an a
posteriori compliance control has only been considered recently [57, 58, 59]. The approach
reported in this paper informs this stream of research. Once process models are annotated
with RBAC constraints as defined in [60] and a log includes role and subject information,
the concept of causal behavioural profiles can be extended for checking also separation of
duty constraints.

9. Conclusion

In this paper, we have discussed the challenges of providing compliance measurements
and feedback on potential deviations in an efficient and effective way. Our contribution is a
novel proposal of measures for compliance measurement based on behavioural constraints
on pairs of activities. By using behavioural profiles as the underlying equivalence notion,
we avoided performance problems of state-based measures. We discussed alternatives for
normalising our measures and also elaborated on the impact of common noise patterns
on them. In addition, our contribution comprises concepts that enable effective root
cause analysis for non-compliant cases. We provide diagnostic information on the level
of single cases, as well as for a process log. All these measures and concepts have been
implemented and validated in a case study with an international service provider.

Still, we also have to reflect on some limitations of our approach. The approach
relies on the assumption that all activities in a process model are unique. Although the
behavioural profile can be lifted to labelled process models (one label may be assigned to
more than one activity) without computational overhead [26], lifting the co-occurrence
relation from activities to activity labels cannot be done efficiently. Besides these technical
issues, an analysis based on labels can be expected to be less meaningful. For instance,
two identically labelled activities at the start and the end of a process (think of a logging
activity) would yield an interleaving order for this label and all other activity labels used
in the process model. Hence, there would be no explicit ordering constraint that could
be violated in a process log. Further, our approach distinguishes activities that may be
executed at most once or multiple times, without considering a concrete number a certain
activity gets executed. This abstraction is more severe in the context of labelled activities
as there might be a specific number of activity executions that must be observed.

In future work, we aim to study the merits of our novel approach in further industry
collaborations. The performance gain of using behavioural profiles is of serious importance
for various use cases. Up until now, compliance measurement had to be conducted offline
in a batch mode due to being very time consuming. We aim to investigate those scenarios
where an instantaneous compliance measurement is valuable. In particular, compliance
measurement in the financial industry might eventually benefit from this innovation, e.g.,
to cancel running transactions that exhibit non-compliant behaviour. Moreover, we aim

27

at investigating resolution strategies that may be proposed to mitigate non-compliant
behaviour. Our root cause analysis proved to isolate compliance violations that are
independent of each other. Hence, we assume that a resolution strategy in terms of a
change operation for the process model can be derived automatically in many cases.

[1] W. M. P. van der Aalst, T. Weijters, L. Maruster, Workflow mining: Discovering process models
from event logs, IEEE Trans. Knowl. Data Eng. 16 (9) (2004) 1128–1142.

[2] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van Dongen, A. K. A. de Medeiros,
M. Song, H. M. W. E. Verbeek, Business process mining: An industrial application, Inf. Syst. 32 (5)
(2007) 713–732.

[3] R. Agrawal, D. Gunopulos, F. Leymann, Mining process models from workflow logs, in: H.-J. Schek,
F. Saltor, I. Ramos, G. Alonso (Eds.), EDBT, Vol. 1377 of Lecture Notes in Computer Science,
Springer, 1998, pp. 469–483.

[4] A. K. A. de Medeiros, W. M. P. van der Aalst, A. J. M. M. Weijters, Workflow mining: Current status
and future directions, in: R. Meersman, Z. Tari, D. C. Schmidt (Eds.), CoopIS/DOA/ODBASE,
Vol. 2888 of Lecture Notes in Computer Science, Springer, 2003, pp. 389–406.

[5] A. Datta, Automating the discovery of as-is business process models: Probabilistic and algorithmic
approaches, Information Systems Research 9 (3) (1998) 275–301.

[6] A. Rozinat, A. K. A. de Medeiros, C. W. Günther, A. J. M. M. Weijters, W. M. P. van der Aalst,
The need for a process mining evaluation framework in research and practice, in: A. H. M. ter
Hofstede, B. Benatallah, H.-Y. Paik (Eds.), Business Process Management Workshops, Vol. 4928 of
Lecture Notes in Computer Science, Springer, 2007, pp. 84–89.

[7] J. D. Weerdt, M. D. Backer, J. Vanthienen, B. Baesens, A critical evaluation study of model-log
metrics in process discovery, in: Proceedings of the 6th International Workshop on Business Process
Intelligence (BPI 2010), Hoboken, NJ, USA, 2010.

[8] W. van der Aalst, V. Rubin, B. van Dongen, E. Kindler, C. Günther, Process mining: A two-step
approach to balance between underfitting and overfitting, Software and Systems Modeling 9 (2010)
87–111.

[9] A. Rozinat, W. M. P. van der Aalst, Conformance checking of processes based on monitoring real
behavior, Inf. Syst. 33 (1) (2008) 64–95.

[10] A. K. A. de Medeiros, W. M. P. van der Aalst, A. J. M. M. Weijters, Quantifying process equivalence
based on observed behavior, Data Knowl. Eng. 64 (1) (2008) 55–74.

[11] A. Weijters, W. van der Aalst, A. A. de Medeiros, Process mining with the heuristicsminer algorithm,
BETA Working Paper Series WP 166, Eindhoven University of Technology, Eindhoven (2006).

[12] G. Greco, A. Guzzo, L. Pontieri, D. Saccà, Discovering expressive process models by clustering log
traces, IEEE Trans. Knowl. Data Eng. 18 (8) (2006) 1010–1027.

[13] S. Goedertier, D. Martens, J. Vanthienen, B. Baesens, Robust process discovery with artificial
negative events, Journal of Machine Learning Research 10 (2009) 1305–1340.

[14] R. Glabbeek, Handbook of Process Algebra, Elsevier, 2001, Ch. The Linear Time – Brancing Time
Spectrum I. The semantics of concrete, sequential processes.

[15] A. Valmari, The state explosion problem., in: W. Reisig, G. Rozenberg (Eds.), Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the Advanced Course on
Petri Nets, held in Dagstuhl, September 1996, Vol. 1491 of Lecture Notes in Computer Science,
Springer, 1998, pp. 429–528.

[16] A. Adriansyah, B. van Dongen, W. van der Aalst, Towards robust conformance checking, in:
Proceedings of the 6th International Workshop on Business Process Intelligence (BPI 2010), 2010.

[17] K. Gerke, J. Cardoso, A. Claus, Measuring the compliance of processes with reference models, in:
R. Meersman, T. S. Dillon, P. Herrero (Eds.), OTM Conferences (1), Vol. 5870 of Lecture Notes in
Computer Science, Springer, 2009, pp. 76–93.

[18] M. Weidlich, J. Mendling, M. Weske, Efficient consistency measurement based on behavioural profiles
of process models, IEEE Transactions on Software Engineering. To appear.

[19] M. Weidlich, A. Polyvyanyy, J. Mendling, M. Weske, Efficient computation of causal behavioural
profiles using structural decomposition, in: J. Lilius, W. Penczek (Eds.), Petri Nets, Vol. 6128 of
Lecture Notes in Computer Science, Springer, 2010, pp. 63–83.

[20] M. Weidlich, A. Polyvyanyy, N. Desai, J. Mendling, Process compliance measurement based on
behavioural profiles, in: B. Pernici (Ed.), CAiSE, Vol. 6051 of Lecture Notes in Computer Science,
Springer, 2010, pp. 499–514.

[21] H. Schuldt, G. Alonso, C. Beeri, H.-J. Schek, Atomicity and isolation for transactional processes,
ACM Trans. Database Syst. 27 (1) (2002) 63–116.

28

[22] O. I. Lindland, G. Sindre, A. Sølvberg, Understanding quality in conceptual modeling, IEEE Software
11 (2) (1994) 42–49.

[23] J. Vanhatalo, H. Völzer, F. Leymann, S. Moser, Automatic workflow graph refactoring and completion,
in: A. Bouguettaya, I. Krüger, T. Margaria (Eds.), ICSOC, Vol. 5364 of Lecture Notes in Computer
Science, 2008, pp. 100–115.

[24] W. M. P. van der Aalst, Workflow verification: Finding control-flow errors using petri-net-based
techniques, in: W. M. P. van der Aalst, J. Desel, A. Oberweis (Eds.), Business Process Management,
Vol. 1806 of Lecture Notes in Computer Science, Springer, 2000, pp. 161–183.

[25] N. Lohmann, E. Verbeek, R. M. Dijkman, Petri net transformations for business processes - a survey,
T. Petri Nets and Other Models of Concurrency 2 (2009) 46–63.

[26] M. Weidlich, F. Elliger, M. Weske, Generalised computation of behavioural profiles based on petri-
net unfoldings, in: Proceedings of the 7th Proceedings of the 7th International Workshop on Web
Services and Formal Methods (WS-FM’10), Hoboken, NJ, US, 2010, to appear.

[27] A. Weijters, W. van der Aalst, Rediscovering workflow models from event-based data using little
thumb, Integrated Computer-Aided Engineering 10 (2) (2003) 151–162.

[28] C. W. Günther, Process mining in flexible environments, Ph.D. thesis, Technische Universiteit
Eindhoven (2009).

[29] R. Agrawal, T. Imielinski, A. N. Swami, Mining association rules between sets of items in large
databases, in: P. Buneman, S. Jajodia (Eds.), SIGMOD Conference, ACM Press, 1993, pp. 207–216.

[30] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: J. B.
Bocca, M. Jarke, C. Zaniolo (Eds.), VLDB, Morgan Kaufmann, 1994, pp. 487–499.

[31] D. J. Rose, R. E. Tarjan, Algorithmic aspects of vertex elimination, in: Proceedings of 7th annual
ACM symposium on Theory of computing, Albuquerque, New Mexico, United States, 1975, pp. 245
– 254.

[32] W. Aalst, A. Weijters, L. Maruster, Workflow mining: Discovering process models from event logs,
IEEE Trans. Knowl. Data Eng. 16 (9) (2004) 1128–1142.

[33] M. Song, W. van der Aalst, Supporting process mining by showing events at a glance, in: K. Chari,
A. Kumar (Eds.), Proceedings of 17th Annual Workshop on Information Technologies and Systems
(WITS 2007), Montreal, Canada, 2007, pp. 139–145.

[34] R. P. J. C. Bose, W. M. P. van der Aalst, Trace alignment in process mining: Opportunities for
process diagnostics, in: R. Hull, J. Mendling, S. Tai (Eds.), BPM, Vol. 6336 of Lecture Notes in
Computer Science, Springer, 2010, pp. 227–242.

[35] J. M. Küster, C. Gerth, A. Förster, G. Engels, Detecting and resolving process model differences in
the absence of a change log, in: Dumas et al. [61], pp. 244–260.

[36] R. M. Dijkman, Diagnosing differences between business process models, in: Dumas et al. [61], pp.
261–277.

[37] R. Glabbeek, U. Goltz, Refinement of actions and equivalence notions for concurrent systems, Acta
Inf. 37 (4/5) (2001) 229–327.

[38] J. Hidders, M. Dumas, W. Aalst, A. Hofstede, J. Verelst, When are two workflows the same?, in:
M. D. Atkinson, F. K. H. A. Dehne (Eds.), CATS, Vol. 41 of CRPIT, Australian Computer Society,
2005, pp. 3–11.

[39] T. Basten, W. Aalst, Inheritance of behavior, JLAP 47 (2) (2001) 47–145.
[40] J. Ebert, G. Engels, Observable or Invocable Behaviour - You Have to Choose, Technical Report

94-38, Department of Computer Science, Leiden University (December 1994).
[41] M. Schrefl, M. Stumptner, Behavior-consistent specialization of object life cycles, ACM Trans. Softw.

Eng. Methodol. 11 (1) (2002) 92–148.
[42] A. Wombacher, Evaluation of technical measures for workflow similarity based on a pilot study,

in: R. Meersman, Z. Tari (Eds.), OTM Conferences (1), Vol. 4275 of Lecture Notes in Computer
Science, Springer, 2006, pp. 255–272.

[43] A. Wombacher, M. Rozie, Evaluation of workflow similarity measures in service discovery, in:
M. Schoop, C. Huemer, M. Rebstock, M. Bichler (Eds.), Service Oriented Electronic Commerce,
Vol. 80 of LNI, GI, 2006, pp. 51–71.

[44] C. Li, M. Reichert, A. Wombacher, On measuring process model similarity based on high-level
change operations, in: Q. Li, S. Spaccapietra, E. S. K. Yu, A. Olivé (Eds.), ER, Vol. 5231 of Lecture
Notes in Computer Science, Springer, 2008, pp. 248–264.

[45] B. Dongen, R. M. Dijkman, J. Mendling, Measuring similarity between business process models, in:
Z. Bellahsene, M. Léonard (Eds.), CAiSE, Vol. 5074 of LNCS, Springer, 2008, pp. 450–464.

[46] N. Li, M. Tripunitara, Z. Bizri, On Mutually Exclusive Roles and Separation-of-Duty, ACM
Transactions on Information and System Security (TISSEC) 10 (2).

29

[47] G. Ahn, R. Sandhu, Role-based Authorization Constraints Specification, ACM Transactions on
Information and System Security (TISSEC) 3 (4).

[48] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, R. Chandramouli, Proposed NIST Standard for
Role-Based Access Control, ACM Transactions on Information and System Security (TISSEC) 4 (3).

[49] E. Bertino, E. Ferrari, V. Atluri, The Specification and Enforcement of Authorization Constraints in
Workflow Management Systems, ACM Transactions on Information and System Security (TISSEC)
2 (1).

[50] D. Ferraiolo, J. Barkley, D. Kuhn, A Role-Based Access Control Model and Reference Implementation
within a Corporate Intranet, ACM Transactions on Information and System Security (TISSEC)
2 (1).

[51] S. Oh, R. S. Sandhu, X. Zhang, An effective role administration model using organization structure,
ACM Trans. Inf. Syst. Secur. 9 (2) (2006) 113–137.

[52] K. Tan, J. Crampton, C. Gunter, The Consistency of Task-Based Authorization Constraints in
Workflow Systems, in: Proc. of the 17th IEEE Workshop on Computer Security Foundations
(CSFW), 2004.

[53] J. Crampton, H. Khambhammettu, Delegation and satisfiability in workflow systems, in: I. Ray,
N. Li (Eds.), SACMAT 2008, 13th ACM Symposium on Access Control Models and Technologies,
Estes Park, CO, USA, June 11-13, 2008, Proceedings, ACM, 2008, pp. 31–40.

[54] M. Strembeck, G. Neumann, An Integrated Approach to Engineer and Enforce Context Constraints
in RBAC Environments, ACM Transactions on Information and System Security (TISSEC) 7 (3).

[55] M. Kuhlmann, D. Shohat, G. Schimpf, Role mining-revealing business roles for security administration
using data mining technology, in: Proceedings of the eighth ACM symposium on Access control
models and technologies, ACM, 2003, p. 186.

[56] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, J. Lobo, Evaluating role mining algorithms, in: Proceedings
of the 14th ACM symposium on Access control models and technologies, ACM, 2009, pp. 95–104.

[57] S. Etalle, W. Winsborough, A posteriori compliance control, in: Proceedings of the 12th ACM
symposium on Access control models and technologies, ACM, 2007, p. 20.

[58] M. Gelfond, J. Lobo, Authorization and obligation policies in dynamic systems, Logic Programming
(2009) 22–36.

[59] R. Accorsi, C. Wonnemann, Auditing workflow executions against dataflow policies, in: Business
Information Systems, Springer, 2010, pp. 207–217.

[60] C. Wolter, A. Schaad, Modeling of task-based authorization constraints in bpmn, in: G. Alonso,
P. Dadam, M. Rosemann (Eds.), Business Process Management, 5th International Conference,
BPM 2007, Brisbane, Australia, September 24-28, 2007, Proceedings, Vol. 4714 of Lecture Notes in
Computer Science, Springer, 2007, pp. 64–79.

[61] M. Dumas, M. Reichert, M.-C. Shan (Eds.), Business Process Management, 6th International
Conference, BPM 2008, Milan, Italy, September 2-4, 2008. Proceedings, Vol. 5240 of Lecture Notes
in Computer Science, Springer, 2008.

30

